This documentation is automatically generated by online-judge-tools/verification-helper
//! [エラトステネスの篩](https://qiita.com/drken/items/3beb679e54266f20ab63)
use std::ops::{Add, MulAssign, Sub};
pub struct Eratosthenes {
max_n: usize,
primes: Vec<usize>,
min_factor: Vec<usize>,
}
impl Eratosthenes {
/// `O(NloglogN)` `max_n`以下の素数を求める
pub fn new(max_n: usize) -> Self {
if max_n == 0 {
return Self {
max_n: 0,
primes: vec![],
min_factor: vec![],
};
}
let mut min_factor = vec![0; max_n + 1];
let mut primes = vec![];
min_factor[1] = 1;
for num in 2..=max_n {
if min_factor[num] != 0 {
continue;
}
primes.push(num);
for cur_num in (num..=max_n).step_by(num) {
if min_factor[cur_num] == 0 {
min_factor[cur_num] = num;
}
}
}
Self {
max_n,
primes,
min_factor,
}
}
pub fn is_prime(&self, n: usize) -> bool {
assert!(n <= self.max_n);
n >= 2 && self.min_factor[n] == n
}
pub fn get_primes(&self) -> &[usize] {
&self.primes
}
/// `O(log n)` でnを素因数分解
/// (素因数、べき) の配列を返す
pub fn factorize(&self, mut n: usize) -> Vec<(usize, usize)> {
assert!(n <= self.max_n);
let mut res = vec![];
while n > 1 {
let p = self.min_factor[n];
let mut cnt = 0;
while self.min_factor[n] == p {
cnt += 1;
n /= p;
}
res.push((p, cnt));
}
res
}
/// `√r`以下の素数を構造体のメンバとして持っていることを前提とする
/// 閉区間`[l, r]`の素因数分解をまとめて行う
/// `M = max(r - l + 1, √r)` として `O(M loglog M)`
/// 素因数分解の結果を二次元配列ですべて持つのでメモリ使用量に注意
/// <https://atcoder.jp/contests/abc227/editorial/2909>
pub fn factorize_range(&self, l: usize, r: usize) -> Vec<Vec<(usize, usize)>> {
if r < l {
return vec![];
}
assert!(r / self.max_n <= self.max_n);
let mut ret = vec![vec![]; r - l + 1];
let mut nums = (l..=r).collect::<Vec<_>>();
for &p in &self.primes {
for num in ((l + p - 1) / p * p..=r).step_by(p) {
if num == 0 {
continue;
}
let mut cnt = 0;
let idx = num - l;
while nums[idx] % p == 0 {
nums[idx] /= p;
cnt += 1;
}
ret[idx].push((p, cnt));
}
}
for (idx, &num) in nums.iter().enumerate() {
if num > 1 {
ret[idx].push((num, 1));
}
}
ret
}
/// `√r` 以下の素数を構造体のメンバとして持っていることを前提とする
/// 閉区間 `[l, r]` が素数か否かをまとめて判定
/// `M = max(r - l + 1, √r)` として `O(M loglog M)`
pub fn is_prime_range(&self, l: usize, r: usize) -> Vec<bool> {
if r < l {
return vec![];
}
assert!(r / self.max_n <= self.max_n);
let mut ret = vec![true; r - l + 1];
if l == 0 {
ret[0] = false;
}
if l <= 1 {
ret[1 - l] = false;
}
for &p in &self.primes {
for num in ((l + p - 1) / p * p..=r).step_by(p) {
if num == p {
continue;
}
let idx = num - l;
ret[idx] = false;
}
}
ret
}
/// 約数の個数オーダーで約数列挙 特に出力はソートしていないので注意
pub fn enumerate_divisors(&self, n: usize) -> Vec<usize> {
let pc = self.factorize(n);
let size = pc.iter().map(|(_, c)| c + 1).product::<usize>();
let mut ret = Vec::with_capacity(size);
ret.push(1);
for (p, c) in pc {
let cur_size = ret.len();
for i in 0..cur_size {
let mut new_num = ret[i];
for _ in 0..c {
new_num *= p;
ret.push(new_num);
}
}
}
ret
}
/// 倍数関係に関する高速ゼータ変換
/// `list[i] = func({list[iの倍数達]})` に変換する
/// 可換な二項演算`func`を指定する
/// 0番目の値については何もしないので注意
pub fn multiple_zeta<T: Copy>(&self, mut list: Vec<T>, func: impl Fn(T, T) -> T) -> Vec<T> {
let n = list.len().saturating_sub(1);
assert!(n <= self.max_n);
for p in self.primes.iter().take_while(|&&p| p <= n) {
for i in (1..=(n / p)).rev() {
list[i] = func(list[i], list[i * p]);
}
}
list
}
/// 倍数関係に関する高速メビウス変換(加算の逆演算)
/// 0番目の値については何もしないので注意
pub fn multiple_mobius<T: Sub<Output = T> + Copy>(&self, mut list: Vec<T>) -> Vec<T> {
let n = list.len().saturating_sub(1);
assert!(n <= self.max_n);
for p in self.primes.iter().take_while(|&&p| p <= n) {
for i in 1..=(n / p) {
list[i] = list[i] - list[i * p];
}
}
list
}
/// 添え字gcd畳み込み
/// 0番目の値については何もしないので注意
pub fn gcd_convolution<T: Add<Output = T> + Sub<Output = T> + MulAssign + Copy>(
&self,
f: &[T],
g: &[T],
) -> Vec<T> {
assert_eq!(f.len(), g.len());
let n = f.len().saturating_sub(1);
assert!(n <= self.max_n);
let f = f.to_vec();
let mut f = self.multiple_zeta(f, |a, b| a + b);
let g = g.to_vec();
let g = self.multiple_zeta(g, |a, b| a + b);
for i in 1..=n {
f[i] *= g[i];
}
self.multiple_mobius(f)
}
/// 約数関係に関する高速ゼータ変換
/// `list[i] = func({list[iの約数達]})` に変換する
/// 可換な二項演算`func`を指定する
/// 0番目の値については何もしないので注意
pub fn divisor_zeta<T: Copy>(&self, mut list: Vec<T>, func: impl Fn(T, T) -> T) -> Vec<T> {
let n = list.len().saturating_sub(1);
assert!(n <= self.max_n);
for p in self.primes.iter().take_while(|&&p| p <= n) {
for i in 1..=(n / p) {
list[i * p] = func(list[i * p], list[i]);
}
}
list
}
/// 約数関係に関する高速メビウス変換(加算の逆演算)
/// 0番目の値については何もしないので注意
pub fn divisor_mobius<T: Sub<Output = T> + Copy>(&self, mut list: Vec<T>) -> Vec<T> {
let n = list.len().saturating_sub(1);
assert!(n <= self.max_n);
for p in self.primes.iter().take_while(|&&p| p <= n) {
for i in (1..=(n / p)).rev() {
list[i * p] = list[i * p] - list[i];
}
}
list
}
}
/// オイラーのトーシェント関数 φ(n) (: = nと互いに素なn以下の自然数の個数) を 1からnまでまとめて求める `O(n log log n)`
pub fn euler_totient_function(n: usize) -> Vec<usize> {
let mut phi = (0..=n).collect::<Vec<usize>>();
for p in 2..=n {
if phi[p] != p {
continue;
}
for multiple in (p..=n).step_by(p) {
phi[multiple] -= phi[multiple] / p;
}
}
phi
}
fn mod_pow(base: u64, mut exp: u64, modulus: u64) -> u64 {
let mut res = 1;
let mut b = (base % modulus) as u128;
let modulus = modulus as u128;
while exp > 0 {
if exp & 1 == 1 {
res = (res * b) % modulus;
}
b = (b * b) % modulus;
exp >>= 1;
}
res as u64
}
fn suspect(a: u64, mut t: u64, n: u64) -> bool {
let mut x = mod_pow(a, t, n);
let n1 = n - 1;
while t != n1 && x != 1 && x != n1 {
x = mod_pow(x, 2, n);
t <<= 1;
}
((t & 1) == 1) || x == n1
}
/// `n < 2^64`におけるミラー・ラビン素数判定法 `O(log n)`
/// オーバフロー対策で128bit整数を使用している分少し遅いかも
/// 連続する区間の素数判定を行う場合は、`is_prime_range`を使用するのがよさそう
pub fn miller_rabin(n: u64) -> bool {
if n < 2 {
return false;
}
const CHECK_LIST: [u64; 12] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
for p in CHECK_LIST {
if n % p == 0 {
return n == p;
}
}
let mut d = (n - 1) >> 1;
d >>= d.trailing_zeros();
for a in CHECK_LIST.into_iter().take_while(|&a| a < n) {
if !suspect(a, d, n) {
return false;
}
}
true
}
#[cfg(test)]
mod test {
use super::*;
use rand::prelude::*;
#[test]
fn test_divisors_manual() {
let era = Eratosthenes::new(60);
let mut divisors_60 = era.enumerate_divisors(60);
divisors_60.sort_unstable();
assert_eq!(divisors_60, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60])
}
#[test]
fn test_multiple_zeta_manual() {
let list = (0..=12).collect::<Vec<usize>>();
let era = Eratosthenes::new(12);
let list = era.multiple_zeta(list, |a, b| a + b);
assert_eq!(list, [0, 78, 42, 30, 24, 15, 18, 7, 8, 9, 10, 11, 12]);
}
#[test]
fn test_divisor_zeta_manual() {
let list = (0..=12).collect::<Vec<usize>>();
let era = Eratosthenes::new(12);
let list = era.divisor_zeta(list, |a, b| a + b);
assert_eq!(list, [0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]);
}
#[test]
fn test_zeta_mobius() {
fn test(size: usize) {
let mut rng = thread_rng();
let list = (0..=size)
.map(|_| rng.gen_range(-100_000_000..=100_000_000))
.collect::<Vec<i64>>();
let era = Eratosthenes::new(size);
let zeta = era.multiple_zeta(list.clone(), |a, b| a + b);
let mobius = era.multiple_mobius(zeta);
assert_eq!(list, mobius);
let zeta = era.divisor_zeta(list.clone(), |a, b| a + b);
let mobius = era.divisor_mobius(zeta);
assert_eq!(list, mobius);
}
for size in [0, 1, 10, 100, 1000, 10000, 100000, 1000000] {
test(size);
}
}
#[test]
fn test_gcd_conv() {
fn test(size: usize) {
let mut rng = thread_rng();
let f = (0..=size)
.map(|_| rng.gen_range(-100..=100))
.collect::<Vec<i64>>();
let g = (0..=size)
.map(|_| rng.gen_range(-100..=100))
.collect::<Vec<i64>>();
let era = Eratosthenes::new(size);
let conv = era.gcd_convolution(&f, &g);
let mut ans = vec![0; size + 1];
for i in 1..=size {
for j in 1..=size {
let gcd = num::integer::gcd(i, j);
ans[gcd] += f[i] * g[j];
}
}
assert!(conv.iter().skip(1).eq(ans.iter().skip(1)));
}
for size in [0, 1, 10, 100, 1000] {
test(size);
}
}
#[test]
fn test_miller_rabin() {
const SIZE: usize = 1000000;
let era = Eratosthenes::new(SIZE);
for i in 1..=SIZE {
assert_eq!(era.is_prime(i), miller_rabin(i as u64), "i = {}", i);
}
assert!(!miller_rabin(10_u64.pow(18) * 2 + 1));
assert!(miller_rabin((1_u64 << 61) - 1));
}
#[test]
fn test_factorize_range() {
const SIZE: usize = 1000000;
let era = Eratosthenes::new(SIZE);
let fact_range = era.factorize_range(0, SIZE);
for i in 0..=SIZE {
let fact = era.factorize(i);
assert_eq!(fact, fact_range[i]);
}
}
#[test]
fn test_is_prime_range() {
const SIZE: usize = 1000000;
let era = Eratosthenes::new(SIZE);
let is_prime_range = era.is_prime_range(0, SIZE);
for i in 0..=SIZE {
assert_eq!(era.is_prime(i), is_prime_range[i], "i = {}", i);
}
}
#[test]
fn test_euler_totient_function() {
const SIZE: usize = 10000;
let phi = euler_totient_function(SIZE);
for i in 1..=SIZE {
let mut cnt = 0;
for j in 1..=i {
if num::integer::gcd(i, j) == 1 {
cnt += 1;
}
}
assert_eq!(phi[i], cnt, "i = {}", i);
}
}
}Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.13.9/x64/lib/python3.13/site-packages/onlinejudge_verify/documentation/build.py", line 71, in _render_source_code_stat
bundled_code = language.bundle(stat.path, basedir=basedir, options={'include_paths': [basedir]}).decode()
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/hostedtoolcache/Python/3.13.9/x64/lib/python3.13/site-packages/onlinejudge_verify/languages/rust.py", line 288, in bundle
raise NotImplementedError
NotImplementedError